

Geophysical prospection of rock dynamic parameters by VSP well logging and SRS - EXAMPLE

Final Report

Brno

July 2018

Contractor:

SIHAYA, spol. s r.o. Veleslavínova 6 612 00 Brno www.sihaya.cz sihaya@sihaya.cz author of this report: Viktor Valtr

LIST OF USED ABBREVIATIONS AND SYMBOLS

Physical			
symbol	Unit	Description	
Cu	[kPa]	(total) coherence	
E	[MPa]	Young's modulus (of elasticity)	
E _{dyn}	[MPa]	dynamic module of elasticity	
Edseis	[MPa]	dynamic module of elasticity by SRS or VSP	
Fs	[Nm]	cone head skin friction	
ϕ_{ef}	[•]	effective angle of internal friction	
φu	[•]	total angle of internal friction	
G _{dyn}	[MPa]	dynamic shear modulus	
G _{dseis}	[MPa]	dynamic shear modulus by SRS or VSP	
l _c		consistency index	
l _d		index of relative density	
VP	[m/s]	velocity of seismic P-waves propagation	
Vs	[m/s]	velocity of seismic S-waves propagation	
ρ	[kg/m³]	volume density	
V _{dseis}	[/]	Poisson's ratio	
Q _d	[MPa]	specific dynamic penetration resistance	
ρ _r	[Ωm]	resistivity of rocks	
$ ho_{app}$	[Ωm]	apparent electric resistivity of rocks	
Abbrev	Description		
DPH	dynamic probing heavy, dynamic penetration probe in heavy variation		
FD	frequency domain		
gph	geophysical		
GRM	(interpretation method) general reciprocal method		
GT	geotechnical		
gwl.	ground water level (HPV)		
HG	hydrogeological		
EG	engineering geology		
N / S	North / South		
pf	profile		
SRS	(method) shallow refraction seismics		
TDC	time distance curve		
VSP	(method) vertical seismic profiling		

1. Methodology of the prospection

The following combination of methods was chosen to deal with the problem set (see Introduction):

• The method of **shallow refraction seismics (SRS)** enables to determine distribution of the parameters of spreading velocity of a seismic P-wave (longitudinal wave) and an S-wave (transversal or shear wave) in rock and soil environments. According to the distribution

of spreading velocity of seismic P-waves, the rocks and soils studied by this method can be divided, within the reach of the measurements, into quasi-homogenous blocks, and the rocks and soils can be classified according to the classes specified in client's report. It also enables us to derive the homogenity and relative density (compactness) and dampness of soils, the depth and condition of the bedrock subbase. It is also possible to perform vertical localization of the subsurface water level if it is within the reach of these measurements. When measuring the S- waves and P-waves, dynamic parameters of the rock environment (E_{dseis} , G_{dseis} , $v_{dseis...}$) and attenuation parameters such as absorption coefficient of seismic energy α (P-waves) can be derived.

- The method of **vertical seismic profiling (VSP)** enables to determine S-wave and P-wave velocities using well-logging sonde Seis3D68VSP with 4 seismic sensors (3 horizontal and 1 vertical seismic geophone cores) and S wave surface source
- Geological interpretation of all methods is based on a research of archive materials and geological maps and geological surface research of locality.

1.1 Shallow refraction seismics (SRS)

1.1.1 Principle of the SRS survey and the equipment used

SRS is a geophysical method identifying velocity distribution of a propagation of seismic waves in rocks under the measurement level and/or the depth of the surface of bed rocks, which are faster from the seismic point of view, under the ground surface. The input data are obtained by measuring the time interval between the moment of the excitation of the seismic waves on a selected site and their arrival to the geophones. The resulting parameters are obtained by investigating a converted problem of seismic waves spreading through the rock half-space.

The spreading velocities of the seismic P-waves and S-waves in rocks in natural environment generally increase with the depth. In the cover – the top layer of the earth surface consisting mainly of soils and weathered rocks – the spreading velocity of seismic waves is usually as much as 10 times smaller than in the rock bed.

Thanks to this great difference in the velocities, the waves spreading on the surface of bedrock subbase (or of subsurface water) outrun the waves spreading in the soils near the ground surface. A so-called head wave is generated.

Near the weathered surface (with the gradient of seismic waves spreading velocities) the fastest seismic waves noticed do not spread directly on the bedrock surface but they spread in a less disintegrated rock more deeply – a so-called refracted wave. This fact enables us to measure the seismic waves' propagation velocities even in greater depths below the bedrock surface and to classify the mechanic condition of rocks in the depth.

SEISMUT 6, a 50-channel seismograph, was used for these measurements. It is capable of measuring and exact adding of weak signals domains from individual impacts to the result in a final readable seismic record. Thanks to this function it is possible to replace the explosives formerly used (as sources of seismic energy) by a weaker mechanic source and significantly decrease noise produced in the environment.

To record seismic P-waves and S-waves 3D geophones PE-6 (4.5 Hz 375 Wm) and vertical geophones PE-3 (10,5Hz) were used. We used RC seismic impact hammer 4 kg to excite seismic energy by 10 to 25 impacts at every shot position.

1.1.2 Geometry used for SRS P-waves and S-waves measurements

On a direct 81 m long line with 28 vertical geophones (seismic vertical vibration sensors) with intervals of 1.5 m up 4.5 m were placed. This line is called "a seismic spread". At one seismic spread the seismic energy is excited by multiple impacts of a heavy hammer (vertically to excite P-waves, in the direction of axis of horizontal geophones and, afterwards, in the opposite direction to excite the S-waves) in seven points: in the middle, in the quarters, at both edges of the seismic spread and at selected points in a varying distance from 45 to 25 m behind both ends of the seismic spread.

1.1.3 SRS processing

The seismic data records saved in a uniform file SEG2 are processed by interpretation program SEIIS (Valtr V., 2017) that was developed on the basis of Palmer's GRM with an accuracy of approx. 5% of the depth.

The result of the processing is a vertical section under the line of measurements with marked quasi-homogeneous blocks for which the average spreading velocity of longitudinal seismic wave has been determined.

From the knowledge of distribution of velocity of propagation of the seismic P-wave and from additional complementary data some dynamic rock parameters can be derived. From those velocity of P waves sections (see Annexes 2) the position of bedrock surface and mechanical quality of cover and of bedrock can be derived.

1.1.4 Relation between the propagation velocity of P-waves and geotechnical parameters of rocks

The resulting seismic parameters of the rock environment are the velocities of propagation of longitudinal or transversal waves, the frequency characteristics of the environment and the loss of amplitudes noticed.

Due to a higher effectiveness the findings of first P-waves are particularly the results of **determination of spreading velocities of P-waves** (**Vp**) along the profiles measured in the depth of as many as 20 m.

This parameter (Vp) correlates with the volume weight ρ mostly according to the relationship:

 $\rho = a * V_p^n$

where the constants **a** and **n** are determined empirically and rank among material constants. When not performing laboratory tests, the relation between V_p and ρ can be used for relative differentiation of lithologically similar rocks by their volume weight

 V_p depends also on the elasticity parameters of the environment:

$$V_{p} = \sqrt{(E^{*}(1-\sigma) / ((\sigma+1)^{*}(1-2^{*}\sigma)))}$$

Where σ is Poisson's ratio and **E** is Young's elasticity module. From the knowledge of spreading velocities of longitudinal and transversal seismic waves certain values of these elasticity parameters can be identified.

Furthermore, **porosity and filling of the voids (pores)** influence the Vp value. Generally, it is true that the Vp velocities are higher in less porous and water-bearing rocks than in rocks with a high porosity and non-water-bearing rocks.

There is a direct proportion between V_p and **the pressure** influencing the rocks and/or the age of the rocks decreasing the porosity and/or increasing the cementation.

 V_p is also directly proportional to **soil compacting** and this dependence can be derived, provided that the soil dampness is approximately constant, by means of gauging by a penetration measurement. (This V_p dependence on compacting is also used by building compact meters.)

Rocks can be classified according to distribution of velocity of spreading of seismic P-waves and according to DPH results:

Workability class I. (in section annexes only in legend by black number 1) – excavation can be made by usual excavating mechanisms like bulldozers, diggers, manually).

Workability class II. (in section annexes only in legend by black number 2) – for excavations special excavating mechanisms are necessary (like ripper, rock hammers ...), and is possible to use also explosives if it is economically advantageous.

Workability class III. (in section annexes only in legend by black number 3) – for excavations explosives are necessary or other special technologies if explosions could endanger surrounding buildings and so on.

1.2 Method of the vertical seismic profiling (VSP)

The method of **vertical seismic profiling (VSP)** enables to determine S-wave and P-wave velocities using well-logging sonde Seis3D68VSP with 4 seismic sensors (3 horizontal and 1 vertical seismic geophone cores) and S wave surface source, see fig. 6.

Wireline Seismic recorder source Downgoing (direct) wavefield Wall-locked receiver Receiver station 6 Receiver station 5 Receiver station 4 Upgoing (reflected) wavefield Receiver station 3 Receiver station 2 Receiver station 1

Fig. 6: VSP – Sonde Seis3D68VSP, scheme of work, jack roll, and VSP P-wave exciting

The shift of seismic energy source from drillhole casing was usually 0.5 m, the depth step of measurement was 0.5 m.

Fig. 7: FD at S-waves and P-waves (lower) records at drillhole GB 3-7 (for frequency range of VSP relevance)

Fig. 8: FD at drillholes GB 1-5 S-waves and P-waves and GB 2-6 S-waves and P-waves records

Seiis - reinterpretace upraveného záznamu - otevřen:	ze záznamů položení H1_H2_V3_H4vrt_3_GB26_h1_T55dm.SG2.mrs -> 3.sg2 - hodochrona číslo:3	D X
Záznam Trasa Hodochrony Upravy Označ Eil	r ↓ ← - Zobrazení + → ↑ Fjil - Lupa + Otř <u>e</u> sy Refraize <u>B</u> ellexCMP RRS O <u>b</u> rázek <u>Tisk Nápověda</u> ligence: SIHAYA spol. s r.o. Brno	
1		0 *
3		
4		
5		2.
6		2
8		
		-
10		
11		
12		
13		
15		
17		
10		
19		
20		
21		1.00
22		- 28
12		~~~~
24		
25		
26		-12
27		
20		2.4
29		
30		
31		
10		15
	100 200	
frekvence [Hz]	trasa: 14. frelvence: 46.6 Hz. amolituda PD: 916	

2. Results of survey

2.1 Results of SRS survey

The situation of the SRS and VSP survey measurements is given in Annexes 1a – 1b.

Survey results measured by method of SRS are presented in a graphical form of geologicalgeophysical section in Annex **2b** and in Annex **2a** there are 3 section schemes of 3 measured drillholes with dynamic parameters derived from S-waves a P-waves velocities (from SRS and VSP measurements) and volume densities (determined by client) in violet colour.

In overburden there were by the SRS method from 3 (S-waves) to 4 (P-waves) layers detected by following refractors (refraction interfaces):

• The shallowest refraction interface (— the thinnest dark blue line for P-waves, for S-waves brown line) separates the most loose/soft layer of random fill material (interpreted number of soil 4) – the soils of the lowest mechanical quality – from a more solid base (see legend in Annex 2b).

• The second (and third) shallower refraction interface (the thicker dark blue line, for S-waves brown line) separates more dense, compact or damp eluvial-deluvial or alluvial soils in their subbase from more disintegrated or/and drier overlaying soils of cover.

The environment of bedrock is divided by the isovels (isolines of seismic P-waves spreading velocity) into several quasi-homogeneous blocks with velocity gradient, the position of which corresponds with the disintegration of the bedrock (the lower is the same isovel the more

and deeper disintegrated – of lower mechanical quality – is the rock), see the blocks description in legend in Annexe 2b.

2.2 Measurement and interpretation quality evaluation of SRS

The SRS measurement quality was generally good. The SRS was negatively influenced particularly by vibrations coming from the powerplant accessories and from the very dampening effect of dumps, which frequently caused polarities of geophones by its extreme varying of P-waves velocities.

The main problem was the velocity of seismic wave possible inversion in case of dumps in quarternary cover. The SRS in such case cannot see more disintegrated soils and rock deeper under such layer or blocks. This problem can be solved by VSP, which can see such layers.

The depth error of SRS is consequently estimated to be as much as 10 % +- 35 cm (reading of first arrivals of head wave error).

This expected mistake can be improved by interpretation calibration on the DPH or drillholes results.

2.3 Results of VSP survey

The situation of the VSP probes is given in Annexes 1a and 1b.

Main results of VSP are tables in annexes 3a to 3c with all measured and picked up times of first arrival of S-waves and P-waves, with geometry of measurements. There are presented also for all determinated quasi-homogeneous blocks of soils (colour filled lines) derived and calculated results like S-waves and P-waves velocities, volume densities and following resultant dynamic parameters of soils:

E _{dseis}	[MPa]	dynamic module of elasticity by SRS or VSP
Gdseis	[MPa]	dynamic shear modulus by SRS or VSP
Vdseis	[/]	Poisson's ratio

Those results are presented also in Annexes 2a and 2b (inserted in violet characters in sections).

Attached annexes: 2b, 2c and 2d with results examples.

Elaborated by: Mgr. Viktor Valtr Job: SIHAYA, spol. s r. o. Veleslavínova 6, Brno 612 00 tel./fax: 420 + 549 211 828

sihaya@sihaya.cz, vww.sihaya.cz

Scale: Client: Geophysical prospection of rock dynamic parameters by Number: VSP well logging and SRS - EXAMPLE 1:200 (A3)

Appendix name: Sections of VSF meas.drill-holes with dyn.parameters

dry Clay Tailings (3) $d_{vn} = 0.47$ E_{dyn} = 171 MPa $G_{dyn} = 58 \text{ MPa}$

wet Clay Tailings (3) $v_{dyn} = 0.49$ E_{dyn} = 232 MPa G_{dyn} = 78 MPa

> surface of more solid Clay Tailings (3) $V_{\rm dyn} = 0.48$ Edyn = 415 MPa G_{dyn} = 140 MPa

more solid Clay Tailings (3) $v_{\rm dyn} = 0.49$ $E_{dyn} = 531 \text{ MPa}$ G_{dyn} = 178 MPa

isolines of spreadig velocities of seismic waves:

most solid -soil description according to drill-hole profile Clay Tailings (3)- (number of interpreted soil unit) V_{dvn} = 0.48 ---dynamic Poisson's ratio Edyn = 949 MPa ---dynamic module of elasticity $\overline{G}_{dyn} = 320$ MPa---dynamic shear modulus

1:200

(A3)

-interface according to dore hole core or well logging

Client: Number:

